About: Umu Response     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Trial105799212, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FUmu_Response

The umu test, first developed and published by Oda et al., is based on the ability of DNA-damaging agents to induce the expression of the umu operon. In connection with the damage inducible genes (din genes) recA, lexA and umuD, the umuC gene is essentially involved in bacterial mutagenesis through the SOS response.

AttributesValues
rdf:type
rdfs:label
  • Umu Response
rdfs:comment
  • The umu test, first developed and published by Oda et al., is based on the ability of DNA-damaging agents to induce the expression of the umu operon. In connection with the damage inducible genes (din genes) recA, lexA and umuD, the umuC gene is essentially involved in bacterial mutagenesis through the SOS response.
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
foaf:isPrimaryTopicOf
prov:wasDerivedFrom
has abstract
  • The umu test, first developed and published by Oda et al., is based on the ability of DNA-damaging agents to induce the expression of the umu operon. In connection with the damage inducible genes (din genes) recA, lexA and umuD, the umuC gene is essentially involved in bacterial mutagenesis through the SOS response. LexA protein is the repressor of all cellular din genes. Lesions such as single-stranded DNA, depurinic and depytimidinic sites or even free deoxynucletoides seem to activate RecA to LexA processing form that facilitates cleavage of LexA repressor, thus leading to derepression of all din genes. RecA protein appears to have further roles in the mutagenic process: first it facilitates cleavage of UmuD protein, thereby generating a mutagenically active form (UmuD’). Due to the participation of the umuC in the mutagenic process leading to both point- and frameshift-mutations, only one single bacterial strain is necessary to detect different types of mutagens. Nevertheless, additional strains have been developed in order to increase sensitivity for the detection of genotoxins, belonging to certain classes, such as nitroarenes. All umu strains carry the plasmid pSK1002 which bears an umuD gene and an umuC gene fused with lacZ, the structural gene for beta-galactosidase. The induction of mutator gene umuC by DNA-damaging agents is detected by measuring intracellular beta-galactosidase levels. Like other tests, the strains have been genetically modified further. A reduction of the lipopolysaccharide structure of the cell wall (rfa) facilitates an increased permeability, epsecailly for hydrophobic chemicals such as polyaromatic hydrocarbons. A further sensitivity enhancing alteration compared with wild type strains is the deficiency in a general pathway for the excision of damaged bases from the DNA: the nucleotide-excision repair. Incision near conformational distortions of the DNA, caused by a variety of bulky adducts, occurs via the formation of multiprotein complex, consisting of 3 proteins, collectively called UvrABC excinuclease. The deletion of this region results in a loss of repair efficiency.
http://purl.org/voc/vrank#hasRank
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Jan 24 2020, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2020 OpenLink Software