About: Spieker circle     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Shape100027807, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSpieker_circle

In geometry, the incircle of the medial triangle of a triangle is the Spieker circle, named after 19th-century German geometer Theodor Spieker. Its center, the Spieker center, in addition to being the incenter of the medial triangle, is the center of mass of the uniform-density boundary of triangle. The Spieker center is also the point where all three cleavers of the triangle (perimeter bisectors with an endpoint at a side's midpoint) intersect each other.

AttributesValues
rdf:type
rdfs:label
  • Circunferencia de Spieker (es)
  • Cercle de Spieker (fr)
  • Cirkel van Spieker (nl)
  • Spieker circle (en)
rdfs:comment
  • En geometría, el incírculo del triángulo medial de un triángulo es la circunferencia de Spieker, nombrada así por el geómetra alemán Theodor Spieker. Su centro, el punto de Spieker, es el incentro del triángulo medial. El centro de Spieker es también el punto donde los bisectores del perímetro del triángulo que terminan el punto medio de cada lado se intersecan. El punto de Nagel y el punto mediano de un triángulo son los centros homotéticos de la Circunferencia de Spieker y de la circunferencia inscrita en el triángulo. (es)
  • In geometry, the incircle of the medial triangle of a triangle is the Spieker circle, named after 19th-century German geometer Theodor Spieker. Its center, the Spieker center, in addition to being the incenter of the medial triangle, is the center of mass of the uniform-density boundary of triangle. The Spieker center is also the point where all three cleavers of the triangle (perimeter bisectors with an endpoint at a side's midpoint) intersect each other. (en)
  • De cirkel van Spieker is een bijzondere cirkel in een driehoek. Het is het complement van de ingeschreven cirkel. Deze cirkel is zowel ingeschreven in de driehoek van de middens van de zijde, als in het beeld van ABC bij vermenigvuldiging ten opzichte van het punt van Nagel met factor . (nl)
  • En géométrie, le cercle de Spieker désigne le cercle inscrit au triangle médian d'un triangle donné. Son nom vient du mathématicien du XIXe siècle . Le centre de ce cercle est appelé centre de Spieker, est également le centre de gravité des trois côtés (contrairement au centre de gravité du triangle qui est l'isobarycentre des sommets). Le centre de Spieker est aussi le point de concurrence des trois droites du triangle qui séparent le périmètre en deux parties égales et passant par le milieu d'un des côtés. Le rayon de ce cercle vaut la moitié du rayon du cercle inscrit au triangle d'origine. (fr)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Spieker_circle.svg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • En geometría, el incírculo del triángulo medial de un triángulo es la circunferencia de Spieker, nombrada así por el geómetra alemán Theodor Spieker. Su centro, el punto de Spieker, es el incentro del triángulo medial. El centro de Spieker es también el punto donde los bisectores del perímetro del triángulo que terminan el punto medio de cada lado se intersecan. El punto de Nagel y el punto mediano de un triángulo son los centros homotéticos de la Circunferencia de Spieker y de la circunferencia inscrita en el triángulo. (es)
  • In geometry, the incircle of the medial triangle of a triangle is the Spieker circle, named after 19th-century German geometer Theodor Spieker. Its center, the Spieker center, in addition to being the incenter of the medial triangle, is the center of mass of the uniform-density boundary of triangle. The Spieker center is also the point where all three cleavers of the triangle (perimeter bisectors with an endpoint at a side's midpoint) intersect each other. (en)
  • En géométrie, le cercle de Spieker désigne le cercle inscrit au triangle médian d'un triangle donné. Son nom vient du mathématicien du XIXe siècle . Le centre de ce cercle est appelé centre de Spieker, est également le centre de gravité des trois côtés (contrairement au centre de gravité du triangle qui est l'isobarycentre des sommets). Le centre de Spieker est aussi le point de concurrence des trois droites du triangle qui séparent le périmètre en deux parties égales et passant par le milieu d'un des côtés. Le cercle de Spieker est également lié au point de Nagel du triangle : il est le cercle inscrit du triangle constitué par les trois points milieux entre le point de Nagel et les sommets du triangle. Le rayon de ce cercle vaut la moitié du rayon du cercle inscrit au triangle d'origine. Le centre de Spieker (Sp) est aligné avec le centre du cercle inscrit (I), le centre de gravité (G) et le point de Nagel (Na) du triangle : (fr)
  • De cirkel van Spieker is een bijzondere cirkel in een driehoek. Het is het complement van de ingeschreven cirkel. Deze cirkel is zowel ingeschreven in de driehoek van de middens van de zijde, als in het beeld van ABC bij vermenigvuldiging ten opzichte van het punt van Nagel met factor . (nl)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software