Attributes  Values 

rdf:type
 
rdfs:label
  Dynamic Bayesian network
 Réseau bayésien dynamique

rdfs:comment
  Un réseau bayésien dynamique ou temporel (souvent noté RBD, ou DBN pour Dynamic Bayesian Network) est un modèle statistique et stochastique qui étend la notion de réseau bayésien. À la différence de ces derniers, un réseau bayésien dynamique permet de représenter l'évolution des variables aléatoires en fonction d'une séquence discrète, par exemple des pas temporels. Le terme dynamique caractérise le système modélisé, et non le réseau qui lui ne change pas.
 A Dynamic Bayesian Network (DBN) is a Bayesian network which relates variables to each other over adjacent time steps. This is often called a TwoTimeslice BN (2TBN) because it says that at any point in time T, the value of a variable can be calculated from the internal regressors and the immediate prior value (time T1). DBNs were developed by Paul Dagum in the early 1990s when he led research funded by two National Science Foundation grants at Stanford University's Section on Medical Informatics. Dagum developed DBNs to unify and extend traditional linear statespace models such as Kalman filters, linear and normal forecasting models such as ARMA and simple dependency models such as hidden Markov models into a general probabilistic representation and inference mechanism for arbitrary non

sameAs
 
dct:subject
 
Wikipage page ID
 
Wikipage revision ID
 
Link from a Wikipage to another Wikipage
 
Link from a Wikipage to an external page
 
foaf:isPrimaryTopicOf
 
prov:wasDerivedFrom
 
has abstract
  A Dynamic Bayesian Network (DBN) is a Bayesian network which relates variables to each other over adjacent time steps. This is often called a TwoTimeslice BN (2TBN) because it says that at any point in time T, the value of a variable can be calculated from the internal regressors and the immediate prior value (time T1). DBNs were developed by Paul Dagum in the early 1990s when he led research funded by two National Science Foundation grants at Stanford University's Section on Medical Informatics. Dagum developed DBNs to unify and extend traditional linear statespace models such as Kalman filters, linear and normal forecasting models such as ARMA and simple dependency models such as hidden Markov models into a general probabilistic representation and inference mechanism for arbitrary nonlinear and nonnormal timedependent domains. Today, DBNs are common in robotics, and have shown potential for a wide range of data mining applications. For example, they have been used in speech recognition, digital forensics, protein sequencing, and bioinformatics. DBN is a generalization of hidden Markov models and Kalman filters.
 Un réseau bayésien dynamique ou temporel (souvent noté RBD, ou DBN pour Dynamic Bayesian Network) est un modèle statistique et stochastique qui étend la notion de réseau bayésien. À la différence de ces derniers, un réseau bayésien dynamique permet de représenter l'évolution des variables aléatoires en fonction d'une séquence discrète, par exemple des pas temporels. Le terme dynamique caractérise le système modélisé, et non le réseau qui lui ne change pas.

http://purl.org/voc/vrank#hasRank
 
http://purl.org/li...ics/gold/hypernym
 
is Link from a Wikipage to another Wikipage
of  
is Wikipage redirect
of  
is Wikipage disambiguates
of  
is foaf:primaryTopic
of  