About: Big O notation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FBig_O_notation

Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. It is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann-Landau notation or asymptotic notation. Big O notation characterizes functions according to their growth rates: different functions with the same growth rate may be represented using the same O notation. Big O notation is also used in many other fields to provide similar estimates.

AttributesValues
rdfs:label
  • Big O notation
  • رمز O الكبير
  • Landau-Symbole
  • Cota superior asintótica
  • Comparaison asymptotique
  • O-grande
  • ランダウの記号
  • Grote-O-notatie
  • Asymptotyczne tempo wzrostu
  • Grande-O
  • «O» большое и «o» малое
  • 大O符号
rdfs:comment
  • يتطرق الرمز O الكبير لمجموعة من الدوال التي تتعلق فيما بينها بالتسارع بالنسبة للاعداد الطبيعية , وبشكل عام توجد عدة رموز كل منها له مفهومه الخاص وقد نشط استخدام هذا الرمز في تحليل سرعة الخوارزميات وذلك لأن حساب عدد العمليات التي تنفذها خوارزمية ما قد يكون مستحيلاً في بعض الأحيان مع وجود كثير من الأمور التي تؤثر على عدد العمليات لذا فإن إعطاء تقريب لعدد العمليات التي تقوم بها الخوارزمية أكثر راحةً لنا والرمز O الكبير يتيح هذا الامر بسهولة .
  • Landau-Symbole werden in der Mathematik und in der Informatik verwendet, um das asymptotische Verhalten von Funktionen und Folgen zu beschreiben. In der Informatik werden sie bei der Analyse von Algorithmen verwendet und geben ein Maß für die Anzahl der Elementarschritte in Abhängigkeit von der Größe der Eingangsvariablen an. Die Komplexitätstheorie verwendet sie, um verschiedene Probleme danach zu vergleichen, wie „schwierig“ oder aufwendig sie zu lösen sind. Man sagt, „schwere Probleme“ wachsen exponentiell mit der Instanz oder schneller und für „leichte Probleme“ existiert ein Algorithmus, dessen Laufzeitzuwächse sich durch das Wachstum eines Polynoms beschränken lassen. Man nennt sie (nicht) polynomiell lösbar.
  • ランダウの記号(ランダウのきごう、英: Landau symbol)は、関数の極限における値の変化度合いに、おおよその評価を与えるための記法である。 ランダウの漸近記法 (asymptotic notation)、ランダウ記法 (Landau notation) あるいは主要な記号として O (オーもしくはオミクロン Ο。数字の0ではない)を用いることから(ランダウの)O-記法、ランダウのオミクロンなどともいう。 記号 O は「程度」の意味のオーダー(Order)から。 なおここでいうランダウはエドムント・ランダウの事であり、『理論物理学教程』の著者であるレフ・ランダウとは別人である。 ランダウの記号は数学や計算機科学をはじめとした様々な分野で用いられる。
  • 大O符号(英语:Big O notation)是用于描述函数渐近行为的数学符号。更确切地说,它是用另一个(通常更简单的)函数来描述一个函数数量级的渐近上界。在数学中,它一般用来刻画被截断的无穷级数尤其是渐近级数的剩余项;在计算机科学中,它在分析算法复杂性的方面非常有用。 大O符号是由德国数论学家保罗·巴赫曼(Paul Bachmann)在其1892年的著作《解析数论》(Analytische Zahlentheorie)首先引入的。而这个记号则是在另一位德国数论学家艾德蒙·朗道(Edmund Landau)的著作中才推广的,因此它有时又称为朗道符号(Landau symbols)。代表“order of ...”(……阶)的大O,最初是一个大写的希腊字母'Ο'(omicron),现今用的是大写拉丁字母‘O’,但从来不是阿拉伯数字‘0’。
  • Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. It is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann-Landau notation or asymptotic notation. Big O notation characterizes functions according to their growth rates: different functions with the same growth rate may be represented using the same O notation. Big O notation is also used in many other fields to provide similar estimates.
  • En análisis de algoritmos una cota superior asintótica es una función que sirve de cota superior de otra función cuando el argumento tiende a infinito. Usualmente se utiliza la notación de Landau O(g(x)), Orden de g(x), o coloquialmente llamada Notación O Grande, para referirse a las funciones acotadas superiormente por la función g(x). Más formalmente se define: Una función f(x) pertenece a O(g(x)) cuando existe una constante positiva c tal que a partir de un valor , f(x) no sobrepasa a . Quiere decir que la función f es inferior a g a partir de un valor dado salvo por un factor constante.
  • En mathématiques, plus précisément en analyse, la comparaison asymptotique est une méthode consistant à étudier le comportement d'une fonction au voisinage d'un point (ou en l'infini), en regard du comportement d'une autre fonction réputée « simple » et « connue », souvent choisie sur une échelle de référence. Cette échelle comprend en général les fonctions constructibles par somme, produit, élévation à une puissance réelle, différentiation et intégration de monômes, d'exponentielles et de logarithmes. Cette méthode peut être utilisée pour traiter de gros volumes de données ou pour étudier le comportement de systèmes complexes en physique et en informatique, en particulier en théorie de la complexité des algorithmes. Elle est également utilisée en théorie analytique des nombres pour évalue
  • La notazione matematica O-grande è utilizzata per descrivere il comportamento asintotico delle funzioni. Il suo obiettivo è quello di caratterizzare il comportamento di una funzione per argomenti elevati in modo semplice ma rigoroso, al fine di poter confrontare il comportamento di più funzioni fra loro. Più precisamente, è usata per descrivere un limite asintotico superiore per la magnitudine di una funzione rispetto ad un'altra, che solitamente ha una forma più semplice.Ha due aree principali di applicazione: in matematica, è solitamente usata per caratterizzare il resto del troncamento di una serie infinita, in particolare di una serie asintotica, mentre in informatica risulta utile nell'analisi della complessità degli algoritmi.
  • In de wiskunde is de grote-O-notatie, ook het grote-O-symbool, een van de Landau-symbolen waarmee op compacte wijze aangegeven kan worden dat een functie asymptotisch gedomineerd wordt door een andere functie. Meestal is de dominerende functie van een eenvoudige vorm, zodat een overzichtelijke indruk verkregen wordt van het asymptotische gedrag van de doelfunctie. Een andere manier om het asymptotische gedrag van de ene functie te vergelijken met een andere functie is het bepalen van de relevante limiet van het quotiënt
  • Asymptotyczne tempo wzrostu jest miarą określającą zachowanie wartości funkcji wraz ze wzrostem jej argumentów. Stosowane jest szczególnie często w teorii obliczeń, w celu opisu złożoności obliczeniowej, czyli zależności ilości potrzebnych zasobów (np. czasu lub pamięci) od rozmiaru danych wejściowych algorytmu. Asymptotyczne tempo wzrostu opisuje jak szybko dana funkcja rośnie lub maleje, abstrahując od konkretnej postaci tych zmian. Do opisu asymptotycznego tempa wzrostu stosuje się notację dużego (omikron; U+039F, kod HTML: Ο) oraz jej modyfikacje, m.in. notacja (omega), (theta).
  • Na matemática, a notação O-grande descreve o comportamento limitante de uma função função quando o argumento tende a um valor específico ou para o infinito, normalmente, em termos de funções mais simples. É membro de uma família maior de notações conhecida como notação Landau, notação Bachmann–Landau (nomeada dessa forma por conta de Edmund Landau e Paul Bachmann), ou notação assintótica. Em ciência da computação, o O-grande é usado para classificar algorítimos pela forma como eles respondem (ex., no tempo de processamento ou espaço de trabalho requerido) a mudanças no tamanho da entrada. Na teoria analítica dos números, é usado para estimar o "erro cometido" quando se substitui o tamanho assintótico, ou o tamanho assintótico médio, de uma função aritmética, pelo valor, ou pelo valor médio
  • «O» большое и «o» малое (и ) — математические обозначения для сравнения асимптотического поведения (асимптотики) функций. Используются в различных разделах математики, но активнее всего — в математическом анализе, теории чисел и комбинаторике, а также в информатике и теории алгоритмов. Под асимптотикой понимается характер изменения функции при её стремлении к определённой точке. , «о малое от » обозначает «бесконечно малое относительно », пренебрежимо малую величину при рассмотрении . Смысл термина «О большое» зависит от его области применения, но всегда растёт не быстрее, чем В частности: к
sameAs
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git39 as of Aug 09 2019


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3232 as of Aug 9 2019, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2019 OpenLink Software