. . . . "En math\u00E9matiques, une suite d'entiers est une s\u00E9quence (c'est-\u00E0-dire une succession ordonn\u00E9e) de nombres entiers. Une suite d'entiers peut \u00EAtre pr\u00E9cis\u00E9e explicitement en donnant une formule pour son n-i\u00E8me terme g\u00E9n\u00E9rique, ou implicitement en donnant une relation entre ses termes. Par exemple la suite de Fibonacci (0, 1, 1, 2, 3, 5, 8, 13, ...) peut \u00EAtre d\u00E9finie : \n* implicitement, par r\u00E9currence : ; \n* explicitement, par la formule de Binet : ."@fr . . . . . . "Sequ\u00EAncia de inteiros"@pt . "\u6574\u6578\u6578\u5217"@zh . . . . . . . . . . . . . . "En helstalsf\u00F6ljd \u00E4r en f\u00F6ljd (det vill s\u00E4ga en o\u00E4ndlig uppr\u00E4kning) av heltal. Talen kan definieras explicit genom en formel som anger hur man ber\u00E4knar n:te talet i f\u00F6ljden, eller implicit genom att ange en relation mellan de ing\u00E5ende talen. Exempelvis f\u00F6ljden 1, 1, 2, 3, 5, 8, 13 ... (Fibonaccitalen) genereras implicit genom att b\u00F6rja med tv\u00E5 ettor och sedan hela tiden addera tv\u00E5 konsekutiva tal f\u00F6r att erh\u00E5lla n\u00E4sta tal i f\u00F6ljden. F\u00F6ljden 0, 3, 8, 15, ... genereras enligt formeln n2 - 1 f\u00F6r n:te termen - en explicit definition."@sv . . . "Na matem\u00E1tica, uma sequ\u00EAncia ou sucess\u00E3o de inteiros \u00E9 uma sequ\u00EAncia (i.e. uma lista ordenada) de n\u00FAmeros inteiros. S\u00E3o exemplos de sequ\u00EAncia de n\u00FAmeros inteiros: \n* A sequ\u00EAncia dos n\u00FAmeros naturais: \n* A sequ\u00EAncia dos quadrados perfeitos: \n* A sequ\u00EAncia dos n\u00FAmeros primos: \n* A sequ\u00EAncia dos n\u00FAmeros fatoriais: \n* A sequ\u00EAncia dos n\u00FAmeros de Fibonacci: \n* A sequ\u00EAncia dos n\u00FAmeros perfeitos: \n* A sequ\u00EAncia dos n\u00FAmeros abundantes: \n* A sequ\u00EAncia dos n\u00FAmeros primos de Mersenne: \n* A sequ\u00EAncia dos n\u00FAmeros de Fermat: \n* A sequ\u00EAncia dos algarismos decimais de \u03C0 :"@pt . "\u6570\u5B66\u306B\u304A\u3051\u308B\u6574\u6570\u5217\uFF08\u305B\u3044\u3059\u3046\u308C\u3064\u3001\u82F1: integer sequence, sequence of integers\uFF09\u306F\u3001\u6574\u6570\u304B\u3089\u306A\u308B\u6570\u5217\uFF08\u6570\u306E\u9806\u756A\u4ED8\u3051\u3089\u308C\u305F\u4E26\u3073\uFF09\u3092\u8A00\u3046\u3002 \u6574\u6570\u5217\u3092\u7279\u5B9A\u3059\u308B\u65B9\u6CD5\u306F\u3001\u305D\u306E\u7B2C n-\u9805\u3092\u4E0E\u3048\u308B\u300C\u967D\u300D(explicit) \u306A\u4ED5\u65B9\u3084\u3001\u305D\u308C\u3089\u306E\u9805\u306E\u9593\u306E\u95A2\u4FC2\u6027\u3092\u4E0E\u3048\u308B\u300C\u9670\u300D(implicit) \u306A\u4ED5\u65B9\u306A\u3069\u304C\u3042\u308B\u3002\u4F8B\u3048\u3070\u30D5\u30A3\u30DC\u30CA\u30C3\u30C1\u6570\u5217 0, 1, 1, 2, 3, 5, 8, 13, \u2026 \u306F\u300C0, 1 \u304B\u3089\u59CB\u307E\u3063\u3066\u3001\u5FC5\u305A\u9023\u7D9A\u3059\u308B\u4E8C\u3064\u306E\u9805\u306E\u548C\u304C\u6B21\u306E\u9805\u306B\u306A\u3063\u3066\u3044\u308B\u300D\u3068\u3044\u3046\u9670\u4F0F\u7684\u306A\u8A18\u8FF0\u304C\u3067\u304D\u308B\u3002\u967D\u306A\u8A18\u8FF0\u306E\u4ED5\u65B9\u306E\u4F8B\u3068\u3057\u3066\u3001\u300C\u7B2C n-\u9805\u304C n2 \u2212 1 \u3067\u4E0E\u3048\u3089\u308C\u308B\u300D\u6570\u5217\u306F 0, 3, 8, 15, \u2026 \u306E\u3088\u3046\u306B\u66F8\u3051\u308B\u3002 \u3082\u3063\u3068\u5225\u306A\u7279\u5B9A\u306E\u4ED5\u65B9\u3068\u3057\u3066\u3001\u305D\u306E\u6570\u5217\u306B\u5C5E\u3059\u308B\u6570\u306F\u6301\u3063\u3066\u3044\u308B\u3051\u308C\u3069\u3082\u305D\u3046\u3067\u306F\u306A\u3044\u6574\u6570\u306F\u6301\u3063\u3066\u3044\u306A\u3044\u3088\u3046\u306A\u6027\u8CEA\u3092\u4E0E\u3048\u308B\u3068\u3044\u3046\u65B9\u6CD5\u304C\u3042\u308B\u3002\u4F8B\u3048\u3070\u3001\u4E0E\u3048\u3089\u308C\u305F\u6574\u6570\u304C\u5B8C\u5168\u6570\u3067\u3042\u308B\u304B\u3069\u3046\u304B\u306F\uFF08n \u756A\u76EE\u306E\u5B8C\u5168\u6570\u3092\u8868\u3059\u516C\u5F0F\u3092\u77E5\u3089\u306A\u304F\u3068\u3082\uFF09\u6C7A\u5B9A\u3059\u308B\u3053\u3068\u304C\u3067\u304D\u308B\u3002"@ja . . . . . "\u6574\u6578\u6578\u5217\uFF0C\u662F\u6307\u4E00\u500B\u7531\u6574\u6578\u5F62\u6210\u7684\u6578\u5217\u3002 \u6709\u4E9B\u6574\u6578\u6578\u5217\u53EF\u4EE5\u7528\u516C\u5F0F\u8868\u793A\uFF0C\u6709\u4E9B\u516C\u5F0F\u662F\u7528\u5404\u9805\u4E4B\u9593\u7684\u95DC\u4FC2\u4F86\u8868\u793A\uFF0C\u4F8B\u5982\u6578\u52170, 1, 1, 2, 3, 5, 8, 13, \u2026\uFF08\u6590\u6CE2\u90A3\u5951\u6570\u5217\uFF09\u7684\u524D\u4E8C\u9805\u5206\u5225\u662F0\u548C1\uFF0C\u4E8C\u9805\u6578\u503C\u76F8\u52A0\u5C31\u53EF\u4EE5\u5F97\u5230\u4E0B\u4E00\u9805\u7684\u503C\uFF1B\u6709\u4E9B\u6578\u5217\u5247\u662F\u6709\u53EF\u76F4\u63A5\u8A08\u7B97\u5404\u9805\u6578\u503C\u7684\u516C\u5F0F\uFF0C\u4F8B\u5982\u6578\u52170, 3, 8, 15, \u2026 \u7684\u7B2Cn\u9805\u516C\u5F0F\u70BAn2 \u2212 1\u3002 \u6709\u4E9B\u6574\u6578\u6578\u5217\u53EA\u80FD\u5217\u51FA\u5176\u4E2D\u7684\u6578\u90FD\u6709\u7684\u7279\u6027\uFF0C\u4F46\u7121\u6CD5\u7528\u516C\u5F0F\u4F86\u8868\u793A\u6578\u5217\u4E2D\u7684\u6578\u503C\u3002\u4EE5\u5B8C\u5168\u6578\u70BA\u4F8B\uFF0C\u53EF\u4EE5\u8A08\u7B97\u4E00\u500B\u6578\u7684\u9664\u6578\u51FD\u6578\u4F86\u5224\u65B7\u662F\u5426\u662F\u5B8C\u5168\u6578\uFF0C\u4F46\u6C92\u6709\u516C\u5F0F\u53EF\u4EE5\u8A08\u7B97\u5404\u9805\u7684\u6578\u503C\u3002"@zh . . . . . . "1122555149"^^ . . . . . . . . . . . "Suite d'entiers"@fr . "\u0641\u064A \u0627\u0644\u0631\u064A\u0627\u0636\u064A\u0627\u062A\u060C \u0645\u062A\u062A\u0627\u0644\u064A\u0629 \u0623\u0639\u062F\u0627\u062F \u0635\u062D\u064A\u062D\u0629 (\u0628\u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629: Integer sequence)\u200F \u0647\u064A \u0645\u062A\u062A\u0627\u0644\u064A\u0629 \u062C\u0645\u064A\u0639 \u062D\u062F\u0648\u062F\u0647\u0627\u060C \u0643\u0645\u0627 \u064A\u062F\u0644 \u0639\u0644\u0649 \u0630\u0644\u0643 \u0627\u0633\u0645\u0647\u0627\u060C \u0623\u0639\u062F\u0627\u062F \u0635\u062D\u064A\u062D\u0629."@ar . . . "In matematica, una successione di interi viene definita come unafunzione dall'insieme dei numeri naturali oppure dall'insieme degli interi positivi nell'insieme dei numeri interi .Il termine quindi si riferisce a due insiemi diversi, che si possono denotare risp. e . Si tratta di una ambiguit\u00E0 veniale, in quanto le successioni dei due insiemi si trovano inuna semplice corrispondenza biunivoca che pu\u00F2 considerarsi come un merocambiamento di notazioni: la successione si pu\u00F2 considerare sotto la forma ponendo per . Le successioni di interi sono quindi particolari funzioni aritmetiche. Per i livelli delle conoscenze che si hanno sulle successioni di interi si possono ripetere le considerazioni svolte in generale per lesuccessioni. La successione 0, 3, 8, 15, 24, ... si controlla con la espressione chiusa .Diversamente la successione di Fibonacci 0, 1, 1, 2, 3, 5, 8, 13, ... si controlla con una relazione fra suoi termini consecutivi, oltre alla posizione dei suoi primi due termini. Una distinzione importante riguarda da una parte l'insieme numerabile delle successioni di interi che si possono individuare con qualche procedimento costruttivo, dall'altra l'insieme di tutte queste successioni che ha cardinalit\u00E0 del continuo, superiore a quella del numerabile. Molte successioni costruibili di interi rivestono grande importanza per la matematica, sostanzialmente perch\u00E9 forniscono direttamente o indirettamente importanti strumenti di calcolo. Ad esse \u00E8 dedicato un archivio in linea ideato e sviluppato, a partire dai tempi in cui si serviva di pacchi di schede perforate, da Neil Sloane e chiamato On-Line Encyclopedia of Integer Sequences, in sigla OEIS; questo archivio costituisce una delle maggiori risorse matematiche e viene utilizzato e arricchito da molti studiosi. Molte successioni costruibili di interi hanno un definito significato enumerativo:il termine n-esimo di una tale successione fornisce il numero delle configurazioni di unaspecie determinata che possono essere costruite su n oggetti elementari (punti, vertici, spigoli,facce, lettere, tessere, ...). Esse quindi costituiscono importanti oggetto di studio diteorie combinatorie, spesso sono collegate a qualche funzione speciale e alla loro funzione generatrice e andrebbero chiamate successioni speciali di interi."@it . . "\u2014 \u0443 \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u0446\u0456 \u2014 \u0446\u0435 \u0432\u043F\u043E\u0440\u044F\u0434\u043A\u043E\u0432\u0430\u043D\u0438\u0439 \u0441\u043F\u0438\u0441\u043E\u043A \u0446\u0456\u043B\u0438\u0445 \u0447\u0438\u0441\u0435\u043B. \u041F\u043E\u0441\u043B\u0456\u0434\u043E\u0432\u043D\u0456\u0441\u0442\u044C \u0446\u0456\u043B\u0438\u0445 \u0447\u0438\u0441\u0435\u043B \u043C\u043E\u0436\u043D\u0430 \u0437\u0430\u0434\u0430\u0442\u0438 \u0432 \u044F\u0432\u043D\u043E\u043C\u0443 \u0432\u0438\u0433\u043B\u044F\u0434\u0456 \u0444\u043E\u0440\u043C\u0443\u043B\u043E\u044E n-\u0433\u043E \u0447\u043B\u0435\u043D\u0430, \u0430\u0431\u043E \u043D\u0435\u044F\u0432\u043D\u043E, \u0437\u0430 \u0434\u043E\u043F\u043E\u043C\u043E\u0433\u043E\u044E \u0432\u0456\u0434\u043D\u043E\u0448\u0435\u043D\u043D\u044F \u043C\u0456\u0436 \u0457\u0457 \u0447\u043B\u0435\u043D\u0430\u043C\u0438. \u041D\u0430\u043F\u0440\u0438\u043A\u043B\u0430\u0434, \u043F\u043E\u0441\u043B\u0456\u0434\u043E\u0432\u043D\u0456\u0441\u0442\u044C \u0424\u0456\u0431\u043E\u043D\u0430\u0447\u0447\u0456 (0, 1, 1, 2, 3, 5, 8, 13, \u2026) \u043C\u043E\u0436\u043D\u0430 \u0437\u0430\u0434\u0430\u0442\u0438 \u0442\u0430\u043A: \n* \u043D\u0435\u044F\u0432\u043D\u043E \u2014 \u0440\u0435\u043A\u0443\u0440\u0435\u043D\u0442\u043D\u0438\u043C \u0441\u043F\u0456\u0432\u0432\u0456\u0434\u043D\u043E\u0448\u0435\u043D\u043D\u044F\u043C: ; \n* \u044F\u0432\u043D\u043E \u2014 \u0444\u043E\u0440\u043C\u0443\u043B\u043E\u044E \u0411\u0456\u043D\u0435: ."@uk . . "Integer sequence"@en . "En math\u00E9matiques, une suite d'entiers est une s\u00E9quence (c'est-\u00E0-dire une succession ordonn\u00E9e) de nombres entiers. Une suite d'entiers peut \u00EAtre pr\u00E9cis\u00E9e explicitement en donnant une formule pour son n-i\u00E8me terme g\u00E9n\u00E9rique, ou implicitement en donnant une relation entre ses termes. Par exemple la suite de Fibonacci (0, 1, 1, 2, 3, 5, 8, 13, ...) peut \u00EAtre d\u00E9finie : \n* implicitement, par r\u00E9currence : ; \n* explicitement, par la formule de Binet : ."@fr . "En helstalsf\u00F6ljd \u00E4r en f\u00F6ljd (det vill s\u00E4ga en o\u00E4ndlig uppr\u00E4kning) av heltal. Talen kan definieras explicit genom en formel som anger hur man ber\u00E4knar n:te talet i f\u00F6ljden, eller implicit genom att ange en relation mellan de ing\u00E5ende talen. Exempelvis f\u00F6ljden 1, 1, 2, 3, 5, 8, 13 ... (Fibonaccitalen) genereras implicit genom att b\u00F6rja med tv\u00E5 ettor och sedan hela tiden addera tv\u00E5 konsekutiva tal f\u00F6r att erh\u00E5lla n\u00E4sta tal i f\u00F6ljden. F\u00F6ljden 0, 3, 8, 15, ... genereras enligt formeln n2 - 1 f\u00F6r n:te termen - en explicit definition."@sv . . "In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers. An integer sequence may be specified explicitly by giving a formula for its nth term, or implicitly by giving a relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... (the Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description. The sequence 0, 3, 8, 15, ... is formed according to the formula n2 \u2212 1 for the nth term: an explicit definition."@en . "\u041F\u043E\u0441\u043B\u0456\u0434\u043E\u0432\u043D\u0456\u0441\u0442\u044C \u0446\u0456\u043B\u0438\u0445 \u0447\u0438\u0441\u0435\u043B"@uk . . . . . . "Na matem\u00E1tica, uma sequ\u00EAncia ou sucess\u00E3o de inteiros \u00E9 uma sequ\u00EAncia (i.e. uma lista ordenada) de n\u00FAmeros inteiros. S\u00E3o exemplos de sequ\u00EAncia de n\u00FAmeros inteiros: \n* A sequ\u00EAncia dos n\u00FAmeros naturais: \n* A sequ\u00EAncia dos quadrados perfeitos: \n* A sequ\u00EAncia dos n\u00FAmeros primos: \n* A sequ\u00EAncia dos n\u00FAmeros fatoriais: \n* A sequ\u00EAncia dos n\u00FAmeros de Fibonacci: \n* A sequ\u00EAncia dos n\u00FAmeros perfeitos: \n* A sequ\u00EAncia dos n\u00FAmeros abundantes: \n* A sequ\u00EAncia dos n\u00FAmeros primos de Mersenne: \n* A sequ\u00EAncia dos n\u00FAmeros de Fermat: \n* A sequ\u00EAncia dos algarismos decimais de \u03C0 :"@pt . . . . . . . . . . . . . . . . . . . . "Seq\u00FC\u00E8ncia d'enters"@ca . . . . "\u6574\u6570\u5217"@ja . . . . "Successione di interi"@it . . . . "En matem\u00E1ticas, una sucesi\u00F3n o secuencia entera es una sucesi\u00F3n (es decir, una lista ordenada) de n\u00FAmeros enteros. Una sucesi\u00F3n entera puede especificarse expl\u00EDcitamente a trav\u00E9s de una f\u00F3rmula para sus n-\u00E9simo t\u00E9rminos, o impl\u00EDcitamente estableciendo una relaci\u00F3n entre sus t\u00E9rminos. As\u00ED por ejemplo: \n* Una descripci\u00F3n impl\u00EDcita para la sucesi\u00F3n de Fibonacci 0, 1, 1, 2, 3, 5, 8, 13, \u2026 es la siguiente: \u00ABla sucesi\u00F3n es aquella que comienza con 0 y 1, y luego se van sumando dos n\u00FAmeros consecutivos para obtener el siguiente\u00BB. \n* Una descripci\u00F3n expl\u00EDcita para la sucesi\u00F3n 0, 3, 8, 15, \u2026 es la caracterizaci\u00F3n mediante la f\u00F3rmula n2 - 1, para el n-\u00E9simo t\u00E9rmino. Alternativamente, una sucesi\u00F3n entera puede ser definida por una propiedad que poseen exclusivamente los miembros de la sucesi\u00F3n. Por ejemplo, podemos determinar si dado un entero, este es un n\u00FAmero perfecto, incluso aunque no se conozca una f\u00F3rmula para el n-\u00E9simo miembro de su sucesi\u00F3n."@es . . . . . . . "Sucesi\u00F3n entera"@es . "\u6574\u6578\u6578\u5217\uFF0C\u662F\u6307\u4E00\u500B\u7531\u6574\u6578\u5F62\u6210\u7684\u6578\u5217\u3002 \u6709\u4E9B\u6574\u6578\u6578\u5217\u53EF\u4EE5\u7528\u516C\u5F0F\u8868\u793A\uFF0C\u6709\u4E9B\u516C\u5F0F\u662F\u7528\u5404\u9805\u4E4B\u9593\u7684\u95DC\u4FC2\u4F86\u8868\u793A\uFF0C\u4F8B\u5982\u6578\u52170, 1, 1, 2, 3, 5, 8, 13, \u2026\uFF08\u6590\u6CE2\u90A3\u5951\u6570\u5217\uFF09\u7684\u524D\u4E8C\u9805\u5206\u5225\u662F0\u548C1\uFF0C\u4E8C\u9805\u6578\u503C\u76F8\u52A0\u5C31\u53EF\u4EE5\u5F97\u5230\u4E0B\u4E00\u9805\u7684\u503C\uFF1B\u6709\u4E9B\u6578\u5217\u5247\u662F\u6709\u53EF\u76F4\u63A5\u8A08\u7B97\u5404\u9805\u6578\u503C\u7684\u516C\u5F0F\uFF0C\u4F8B\u5982\u6578\u52170, 3, 8, 15, \u2026 \u7684\u7B2Cn\u9805\u516C\u5F0F\u70BAn2 \u2212 1\u3002 \u6709\u4E9B\u6574\u6578\u6578\u5217\u53EA\u80FD\u5217\u51FA\u5176\u4E2D\u7684\u6578\u90FD\u6709\u7684\u7279\u6027\uFF0C\u4F46\u7121\u6CD5\u7528\u516C\u5F0F\u4F86\u8868\u793A\u6578\u5217\u4E2D\u7684\u6578\u503C\u3002\u4EE5\u5B8C\u5168\u6578\u70BA\u4F8B\uFF0C\u53EF\u4EE5\u8A08\u7B97\u4E00\u500B\u6578\u7684\u9664\u6578\u51FD\u6578\u4F86\u5224\u65B7\u662F\u5426\u662F\u5B8C\u5168\u6578\uFF0C\u4F46\u6C92\u6709\u516C\u5F0F\u53EF\u4EE5\u8A08\u7B97\u5404\u9805\u7684\u6578\u503C\u3002"@zh . . . "\u6570\u5B66\u306B\u304A\u3051\u308B\u6574\u6570\u5217\uFF08\u305B\u3044\u3059\u3046\u308C\u3064\u3001\u82F1: integer sequence, sequence of integers\uFF09\u306F\u3001\u6574\u6570\u304B\u3089\u306A\u308B\u6570\u5217\uFF08\u6570\u306E\u9806\u756A\u4ED8\u3051\u3089\u308C\u305F\u4E26\u3073\uFF09\u3092\u8A00\u3046\u3002 \u6574\u6570\u5217\u3092\u7279\u5B9A\u3059\u308B\u65B9\u6CD5\u306F\u3001\u305D\u306E\u7B2C n-\u9805\u3092\u4E0E\u3048\u308B\u300C\u967D\u300D(explicit) \u306A\u4ED5\u65B9\u3084\u3001\u305D\u308C\u3089\u306E\u9805\u306E\u9593\u306E\u95A2\u4FC2\u6027\u3092\u4E0E\u3048\u308B\u300C\u9670\u300D(implicit) \u306A\u4ED5\u65B9\u306A\u3069\u304C\u3042\u308B\u3002\u4F8B\u3048\u3070\u30D5\u30A3\u30DC\u30CA\u30C3\u30C1\u6570\u5217 0, 1, 1, 2, 3, 5, 8, 13, \u2026 \u306F\u300C0, 1 \u304B\u3089\u59CB\u307E\u3063\u3066\u3001\u5FC5\u305A\u9023\u7D9A\u3059\u308B\u4E8C\u3064\u306E\u9805\u306E\u548C\u304C\u6B21\u306E\u9805\u306B\u306A\u3063\u3066\u3044\u308B\u300D\u3068\u3044\u3046\u9670\u4F0F\u7684\u306A\u8A18\u8FF0\u304C\u3067\u304D\u308B\u3002\u967D\u306A\u8A18\u8FF0\u306E\u4ED5\u65B9\u306E\u4F8B\u3068\u3057\u3066\u3001\u300C\u7B2C n-\u9805\u304C n2 \u2212 1 \u3067\u4E0E\u3048\u3089\u308C\u308B\u300D\u6570\u5217\u306F 0, 3, 8, 15, \u2026 \u306E\u3088\u3046\u306B\u66F8\u3051\u308B\u3002 \u3082\u3063\u3068\u5225\u306A\u7279\u5B9A\u306E\u4ED5\u65B9\u3068\u3057\u3066\u3001\u305D\u306E\u6570\u5217\u306B\u5C5E\u3059\u308B\u6570\u306F\u6301\u3063\u3066\u3044\u308B\u3051\u308C\u3069\u3082\u305D\u3046\u3067\u306F\u306A\u3044\u6574\u6570\u306F\u6301\u3063\u3066\u3044\u306A\u3044\u3088\u3046\u306A\u6027\u8CEA\u3092\u4E0E\u3048\u308B\u3068\u3044\u3046\u65B9\u6CD5\u304C\u3042\u308B\u3002\u4F8B\u3048\u3070\u3001\u4E0E\u3048\u3089\u308C\u305F\u6574\u6570\u304C\u5B8C\u5168\u6570\u3067\u3042\u308B\u304B\u3069\u3046\u304B\u306F\uFF08n \u756A\u76EE\u306E\u5B8C\u5168\u6570\u3092\u8868\u3059\u516C\u5F0F\u3092\u77E5\u3089\u306A\u304F\u3068\u3082\uFF09\u6C7A\u5B9A\u3059\u308B\u3053\u3068\u304C\u3067\u304D\u308B\u3002"@ja . "\u0645\u062A\u062A\u0627\u0644\u064A\u0629 \u0623\u0639\u062F\u0627\u062F \u0635\u062D\u064A\u062D\u0629"@ar . . "\u0641\u064A \u0627\u0644\u0631\u064A\u0627\u0636\u064A\u0627\u062A\u060C \u0645\u062A\u062A\u0627\u0644\u064A\u0629 \u0623\u0639\u062F\u0627\u062F \u0635\u062D\u064A\u062D\u0629 (\u0628\u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629: Integer sequence)\u200F \u0647\u064A \u0645\u062A\u062A\u0627\u0644\u064A\u0629 \u062C\u0645\u064A\u0639 \u062D\u062F\u0648\u062F\u0647\u0627\u060C \u0643\u0645\u0627 \u064A\u062F\u0644 \u0639\u0644\u0649 \u0630\u0644\u0643 \u0627\u0633\u0645\u0647\u0627\u060C \u0623\u0639\u062F\u0627\u062F \u0635\u062D\u064A\u062D\u0629."@ar . "51421"^^ . . . "En matem\u00E1ticas, una sucesi\u00F3n o secuencia entera es una sucesi\u00F3n (es decir, una lista ordenada) de n\u00FAmeros enteros. Una sucesi\u00F3n entera puede especificarse expl\u00EDcitamente a trav\u00E9s de una f\u00F3rmula para sus n-\u00E9simo t\u00E9rminos, o impl\u00EDcitamente estableciendo una relaci\u00F3n entre sus t\u00E9rminos. As\u00ED por ejemplo: Alternativamente, una sucesi\u00F3n entera puede ser definida por una propiedad que poseen exclusivamente los miembros de la sucesi\u00F3n. Por ejemplo, podemos determinar si dado un entero, este es un n\u00FAmero perfecto, incluso aunque no se conozca una f\u00F3rmula para el n-\u00E9simo miembro de su sucesi\u00F3n."@es . "In matematica, una successione di interi viene definita come unafunzione dall'insieme dei numeri naturali oppure dall'insieme degli interi positivi nell'insieme dei numeri interi .Il termine quindi si riferisce a due insiemi diversi, che si possono denotare risp. e . Si tratta di una ambiguit\u00E0 veniale, in quanto le successioni dei due insiemi si trovano inuna semplice corrispondenza biunivoca che pu\u00F2 considerarsi come un merocambiamento di notazioni: la successione si pu\u00F2 considerare sotto la forma ponendo per . Le successioni di interi sono quindi particolari funzioni aritmetiche."@it . . . . . . "Una seq\u00FC\u00E8ncia d'enters o successi\u00F3 d'enters en matem\u00E0tica \u00E9s una successi\u00F3, \u00E9s a dir, una llista ordenada) de nombres enters. Una successi\u00F3 d'enters es pot especificar expl\u00EDcitament a trav\u00E9s d'una f\u00F3rmula per als seus n-\u00E8sim termes, o impl\u00EDcitament establint una relaci\u00F3 entre els seus termes. Aix\u00ED per exemple:"@ca . . . . . "Heltalsf\u00F6ljd"@sv . . "Una seq\u00FC\u00E8ncia d'enters o successi\u00F3 d'enters en matem\u00E0tica \u00E9s una successi\u00F3, \u00E9s a dir, una llista ordenada) de nombres enters. Una successi\u00F3 d'enters es pot especificar expl\u00EDcitament a trav\u00E9s d'una f\u00F3rmula per als seus n-\u00E8sim termes, o impl\u00EDcitament establint una relaci\u00F3 entre els seus termes. Aix\u00ED per exemple: \n* Una descripci\u00F3 impl\u00EDcita per a la successi\u00F3 de Fibonacci 0, 1, 1, 2, 3, 5, 8, 13, ... \u00E9s la seg\u00FCent: \"la successi\u00F3 \u00E9s aquella que comen\u00E7a amb 0 i 1, i despr\u00E9s es van sumant dos nombres consecutius per obtenir el seg\u00FCent\". \n* Una descripci\u00F3 expl\u00EDcita per a la successi\u00F3 0, 3, 8, 15, ... \u00E9s la caracteritzaci\u00F3 mitjan\u00E7ant la f\u00F3rmula n\u00B2 \u2212 1, per al n-\u00E8sim terme. Alternativament, una successi\u00F3 entera pot ser definida per una propietat que tenen exclusivament els membres de la successi\u00F3. Per exemple, podem determinar si donat un enter, aquest \u00E9s un nombre perfecte, fins i tot encara que no es conegui una f\u00F3rmula per al n-\u00E8sim membre de la seva successi\u00F3."@ca . "5185"^^ . . . . "In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers. An integer sequence may be specified explicitly by giving a formula for its nth term, or implicitly by giving a relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... (the Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description. The sequence 0, 3, 8, 15, ... is formed according to the formula n2 \u2212 1 for the nth term: an explicit definition. Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, even though we do not have a formula for the nth perfect number."@en . "\u2014 \u0443 \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u0446\u0456 \u2014 \u0446\u0435 \u0432\u043F\u043E\u0440\u044F\u0434\u043A\u043E\u0432\u0430\u043D\u0438\u0439 \u0441\u043F\u0438\u0441\u043E\u043A \u0446\u0456\u043B\u0438\u0445 \u0447\u0438\u0441\u0435\u043B. \u041F\u043E\u0441\u043B\u0456\u0434\u043E\u0432\u043D\u0456\u0441\u0442\u044C \u0446\u0456\u043B\u0438\u0445 \u0447\u0438\u0441\u0435\u043B \u043C\u043E\u0436\u043D\u0430 \u0437\u0430\u0434\u0430\u0442\u0438 \u0432 \u044F\u0432\u043D\u043E\u043C\u0443 \u0432\u0438\u0433\u043B\u044F\u0434\u0456 \u0444\u043E\u0440\u043C\u0443\u043B\u043E\u044E n-\u0433\u043E \u0447\u043B\u0435\u043D\u0430, \u0430\u0431\u043E \u043D\u0435\u044F\u0432\u043D\u043E, \u0437\u0430 \u0434\u043E\u043F\u043E\u043C\u043E\u0433\u043E\u044E \u0432\u0456\u0434\u043D\u043E\u0448\u0435\u043D\u043D\u044F \u043C\u0456\u0436 \u0457\u0457 \u0447\u043B\u0435\u043D\u0430\u043C\u0438. \u041D\u0430\u043F\u0440\u0438\u043A\u043B\u0430\u0434, \u043F\u043E\u0441\u043B\u0456\u0434\u043E\u0432\u043D\u0456\u0441\u0442\u044C \u0424\u0456\u0431\u043E\u043D\u0430\u0447\u0447\u0456 (0, 1, 1, 2, 3, 5, 8, 13, \u2026) \u043C\u043E\u0436\u043D\u0430 \u0437\u0430\u0434\u0430\u0442\u0438 \u0442\u0430\u043A: \n* \u043D\u0435\u044F\u0432\u043D\u043E \u2014 \u0440\u0435\u043A\u0443\u0440\u0435\u043D\u0442\u043D\u0438\u043C \u0441\u043F\u0456\u0432\u0432\u0456\u0434\u043D\u043E\u0448\u0435\u043D\u043D\u044F\u043C: ; \n* \u044F\u0432\u043D\u043E \u2014 \u0444\u043E\u0440\u043C\u0443\u043B\u043E\u044E \u0411\u0456\u043D\u0435: ."@uk . . . .